Reconfigurable Devices in the 21st Century

An Evolutionary Perspective

Steve Trimberger
Principal Engineer

FPGA Evolution

- Part 1. Environment
 - Primordial soup, ice ages and global warming
- Part 2. Development
- Part 3. Focus on Reconfiguration
- Part 4. Looking Ahead

The Primordial Soup: Moore's Law

Source: SIA

FPGAs: Ahead of the Curve

Process Technology Node versus Time

ST 7/18/2001

Major Process Focus

Catastrophism: Major Environment Change in the 90s

Time to Market: Design Productivity Gap

Source: VLSI Technology

Alternative Interpretations of the Design Productivity Gap

- 1 Design methodology is falling behind.
 - We must make design more efficient
 - Higher-level capture; better automation
 - Eliminate the "Intelligent Designer"
- 2 The design problem is just too big for one person.
 - We must make design teams effective
- 3 Transistors are cheap.
 - Spend them for something more valuable (like design time)

Volume Manufacturing

- Need advanced CMOS process
 - Speed, capacity, cost
 - The most advanced is the simplest: transistors and wires
- Test is critical
 - Test is cheaper without non-volatile programming (er, how do you test matches anyway?)
 - BIST: leverage reconfigurability to test itself

Applications Focus

FPGA Evolution

- Part 1. Environment
- Part 2. Development
 - The three Ages of FPGAs
 - Market-based Darwinian evolution
 - Extinction events
- Part 3. Focus on Reconfiguration
- Part 4. Looking Ahead

Development: The Three Ages of FPGAs

The Age of Invention

- The Pre-Cambrian
 - FPGAs crawl out of the sea (of gates)
 - FPGAs are much smaller than the application problem size
- The Cambrian Explosion
 - The architecture of the month
 - CLA, LCA, ERA, ACT, xPLD, TC, ORCA, CAL, CL, QL, Am, AT, CLi, CP, GF, MPA, ...

The Tertiary Period

The Age of Expansion

The Age of Expansion

On-chip Performance Improvement

Dramatic improvement for "hands-off" design

50 Million System Gates in 2005!

The Age of Accumulation

The Age of Accumulation

XCV2000E

• 0.35u - 5 level Al

XC4085XL

- 10M transistors
- 85k system gates
- 33 Kb max memory
- 50MHz internal clock
- I/O 50Mb/sec
- P/R 20k gates/hour

- 0.18u 7 level Al
- 150M transistors
- 2M system gates
- 1.2Mb max memory
- 100MHz internal clock
- · I/O 622Mb/sec/pair
- DLL Clock Mgmt
- · 266MHz DDR interface
- P/R 250k gates/hour
- · partial reconfigurable

Virtex-II Pro

- 130nm 8 level Cu
- 250M transistors
- 5M system gates
- 3.5Mb max memory
- 200WiHz internal clock
- Dedicated multipliers
- 300MHz PowerPC
- WindRiver RTOS
- I/O 3.125 Gb/sec/pair
- DLL Clock Mgmt
- XITE signal integrity
- 325 MHz DDR interface
- P/R 1M gates/hour
- secure configuration

1998 2000

2002

Evolutionary Pressures in the 21st Century

- Moore's Law
 - Continues for the foreseeable future
- Volume Manufacturing
 - Special structures for test and verification
- Time to market
 - Board-level systems issues
 - Signal integrity
 - How to use all the stuff?
 - Verification
- Applications demands
 - Power, signal integrity, reliability, speed

FPGA Evolution

- Part 1. Environment
- Part 2. Development
- Part 3. Focus on Reconfiguration
 - What is its survival advantage?
 - How are environmental pressures affecting it?
- Part 4. Looking Ahead

Reconfiguration Evolution

Supporting Process Technology and

Volume Manufacturing

- Addressable configuration
 - Contention-free partial reconfiguration

So What Happened to Rapid Reconfiguration?

- Not a competitive advantage in the 1990s
 - Configuration times were not fatally long
 - Very-high-speed configuration logic (ns) took too much space
 - Moderate-speed reconfiguration (microseconds) had marginal benefits
 - There were other ways to get done the tasks that were addressed by reconfiguration
 - Software was not in place to exploit it
- Bigger FPGAs simply out-competed rapidlyreconfigurable devices

What is Changing?

- Volume Manufacturing
 - Test time is dominated by configuration time
 - Configuration time scales with gate count
 - → Test time is getting long.
- Process Technology
 - Configuration architecture is changing as process technology causes long wires to be problematic
- Applications
 - High-speed, low C interconnect circuits

Applications and Time to Market The Window of Innovation

SW Design **HW Design** Integration **Architect Prototype** Manufacture **Deployment** Cycle **Fixed Chips Design Frozen Traditional Programmable Chips Design Window Extended** VIRTEX **Expanded Window of Innovation**

FPGA Evolution

- Part 1. Environment
- Part 2. Development
- Part 3. Focus on Reconfiguration
- Part 4. Looking Ahead
 - A peek at the end of the 21st century

FPGA 2100

Line Width 100 pm

Wafer Size 2m

Die Size 25 cm²

Transistor Count 2.5 x 10¹⁴

FPGA Gate Count 1 B

Design Speed 60GHz

Power 200 KW

Fab Cost \$1T

Mask Set Cost \$1B

Design Time 5 centuries

Nanotechnology

- Moore's Law will run out someday
 - New technology needed
- Nanotechnology
 - Molecules as wires and switches
 - Very small
 - Very low power
 - Very cheap
 - Absolutely unmanufactureable with the quality levels needed to build 10¹⁰ devices
 - Nanotechnology systems will need

In Summary

- Environment pressure from process technology, volume manufacturing, applications and time-to-market
- Reconfiguration has been driven by process technology and manufacturability, not by applications
- Reconfiguration is now required for new models of delivery of functionality

So, what will be the fourth Age of FPGAs?